Entangled Photons

Anand Kumar Jha
Department of Physics
Indian Institute of Technology Kanpur

December 13 ${ }^{\text {th }}$, 2014

Quantum Entanglement

Einstein objected to this kind of phenomenon

EPR Paradox [A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935)]

One photon system:

Momentum is the Physical Reality

Diffracting wave
\qquad

Position is the
Physical Reality

$$
\Delta x \Delta p \geq \frac{\hbar}{2}
$$

"When the operators corresponding to two physical quantities do not commute the two quantifies cannot have simultaneous reality." -- EPR rephrasing the uncertainty relation.

Two-photon system (Entangled):

$$
\Delta x_{\mathrm{cond}}^{(1)} \Delta p_{\text {cond }}^{(1)}<\frac{\hbar}{2}
$$

Non-local correlation ???

EPR's Questions:
 (1) Is Quantum mechanics incomplete??

(2) Does it require additional "hidden variables" to explain the measurement results.

Sources of Entangled Photons

$$
\boldsymbol{q}_{p}=\boldsymbol{q}_{s}+\boldsymbol{q}_{i} \quad \text { Conservation of momentum }
$$

$$
\omega_{p}=\omega_{s}+\omega_{i} \quad \text { Conservation of Energy }
$$

$$
l_{p}=l_{s}+l_{i} \quad \text { Conservation of Orbital Angular Momentum }
$$

Other method: Four-wave Mixing

Orbital Angular momentum of a photon

Angular position

$A_{l}=\frac{1}{\sqrt{2 \pi}} \int_{-\pi}^{\pi} d \phi \Psi(\phi) \exp (-i l \phi)$
$\Psi(\phi)=\frac{1}{\sqrt{2 \pi}} \sum_{l=-\infty}^{+\infty} A_{l} \exp (i l \phi)$
Barnett and Pegg, PRA 41, 3427 (1990)
Franke-Arnold et al., New J. Phys. 6, 103 (2004)
Forbes, Alonso, and Siegman J. Phys. A 36, 707 (2003)

Laguerre-Gauss basis $L G_{p}^{l}$

$$
\mathbf{A}=\hat{x} u(\rho, z) e^{-i k z} e^{i l \phi}
$$

$I=0$
I=1

$I=2$

$$
\frac{J_{z}}{W}=\frac{\iint \rho d \rho d \phi\left(\boldsymbol{\rho} \times\langle\mathbf{E} \times \mathbf{B}\rangle_{z}\right.}{c \iint \rho d \rho d \phi\langle\mathbf{E} \times \mathbf{B}\rangle_{z}}=\frac{\hbar l}{\hbar \omega}
$$

Types of Entanglement

Parametric down-conversion (PDC)

Entanglement in position and momentum $\Delta x_{\text {cond }}^{(1)} \Delta p_{\text {cond }}^{(1)}<\frac{\hbar}{2}$
Entanglement in time and energy

$$
\Delta t_{\text {cond }}^{(1)} \Delta E_{\text {cond }}^{(1)}<\frac{\hbar}{2}
$$

Entanglement in angular position and orbital angular momentum

$$
\Delta \phi_{\text {cond }}^{(1)} \Delta L_{\text {cond }}^{(1)}<\frac{\hbar}{2}
$$

What is Polarization Entanglement?

(1) If signal photon has horizontal (vertical) polarization, idler photon is guaranteed to have horizontal (vertical) polarization
--- Is this entanglement ?? NO
--- Two independent classical sources can also produce such correlations

What is Polarization Entanglement?

(1) If signal photon has horizontal (vertical) polarization, idler photon is guaranteed to have horizontal (vertical) polarization
--- Is this entanglement ?? NO
--- Two independent classical sources can also produce such correlations
(2) If signal photon has $45^{\circ}\left(-45^{\circ}\right)$ polarization, idler photon is guaranteed to have $45^{\circ}\left(-45^{\circ}\right)$ polarization
--- Is this entanglement ?? NO
--- Two independent classical sources can also produce such correlations

What is Polarization Entanglement?

(1) If signal photon has horizontal (vertical) polarization, idler photon is guaranteed to have horizontal (vertical) polarization
--- Is this entanglement ?? NO
--- Two independent classical sources can also produce such correlations
(2) If signal photon has $45^{\circ}\left(-45^{\circ}\right)$ polarization, idler photon is guaranteed to have $45^{\circ}\left(-45^{\circ}\right)$ polarization
--- Is this entanglement ?? NO
--- Two independent classical sources can also produce such correlations

If correlations (1) and (2) exist simultaneously, then that is entanglement

Quantum Entanglement and hidden variables

- 1950s: hidden variable quantum mechanics by David Bohm
D. Bohm, Phys. Rev. 85, 166 (1952);
D. Bohm, Phys. Rev. 85, 180 (1952).
- 1964: Bell’s Inequality--- A proposed test for quantum entanglement
J. S. Bell, Physics 1, 195 (1964).
- 1980s -90s --- Experimental violations of Bell's inequality

Aspect et al., Phys. Rev. Lett. 47, 460 (1981).
Brendel et al., Phys. Rev. Lett. 66, 1142 (1991)
Kwiat et al., Phys. Rev. A 47, R2472 (1993)
Strekalov et al., Phys. Rev. A 54, R1 (1996)
Barreiro et al., Phys. Rev. Lett. 95, 260501 (2005)

Bell's Inequality for Polarization-Entangled Photons

Bell's Inequality for Polarization-Entangled Photons

$$
|\psi\rangle=\left|H_{s}\right\rangle\left|H_{i}\right\rangle+\left|V_{s}\right\rangle\left|V_{i}\right\rangle
$$

$$
|\psi\rangle=|45\rangle_{s}|45\rangle_{i}+|-45\rangle_{s}|-45\rangle_{i}
$$

Bell Parameter: $\quad S=E(a, b)-E\left(a, b^{\prime}\right)+\left(a^{\prime}, b\right)+E\left(a^{\prime}, b^{\prime}\right)$

$$
\begin{gathered}
E(\alpha, \beta)=\frac{N(\alpha, \beta)+N\left(\alpha_{\perp}, \beta_{\perp}\right)-N\left(\alpha, \beta_{\perp}\right)-N\left(\alpha_{\perp}, \beta_{\perp}\right)}{N(\alpha, \beta)+N\left(\alpha_{\perp}, \beta_{\perp}\right)+N\left(\alpha, \beta_{\perp}\right)+N\left(\alpha_{\perp}, \beta_{\perp}\right)} \\
\quad \alpha=-45^{0} ; \alpha^{\prime}=0^{0} ; \alpha_{\perp}=45^{0} ; \alpha_{\perp}^{\prime}=90^{0} \\
\beta=-22.5^{0} ; \beta^{\prime}=22.5^{0} ; \beta_{\perp}=67.5^{0} ; \beta_{\perp}^{\prime}=112.5^{0}
\end{gathered}
$$

Phys. Rev. Lett. 47, 460 (1981).
Phys. Rev. Lett. 66, 1142 (1991)
Phys. Rev. A 47, R2472 (1993)
Phys. Rev. A 54, R1 (1996)
Phys. Rev. Lett. 95, 260501 (2005)
$|S| \leq 2 \quad$ For hidden variable theories
$|S| \leq 2 \sqrt{2}$ For quantum correlations

Types of Entanglement

Parametric down-conversion (PDC)

Entanglement in position and momentum $\Delta x_{\text {cond }}^{(1)} \Delta p_{\text {cond }}^{(1)}<\frac{\hbar}{2}$
Entanglement in time and energy

$$
\Delta t_{\text {cond }}^{(1)} \Delta E_{\text {cond }}^{(1)}<\frac{\hbar}{2}
$$

Entanglement in angular position and orbital angular momentum

$$
\Delta \phi_{\text {cond }}^{(1)} \Delta L_{\text {cond }}^{(1)}<\frac{\hbar}{2}
$$

Verifying continuous variable entanglement

Position-momentum Entanglement [Phys. Rev. Lett. 92, 210403 (2004)]

$$
\Delta x_{\text {cond }}^{(1)} \Delta p_{\text {cond }}^{(1)}<0.06 \hbar
$$

Time-energy Entanglement

Phys. Rev. A 73, 031801(R), 2006
Nature Physics 9, 19 (2013)

Angular-position Orbital-angular-momentum Entanglement [Science 329, 662 (2010).]

$$
\Delta \phi_{\text {cond }}^{(1)} \Delta L_{\text {cond }}^{(1)}<0.15 \hbar
$$

Bell inequality violation in 2D state space of continuous variables

Position-momentum Entanglement [Phys. Rev. Lett. 64, 2495 (1990)]

$$
|\psi\rangle=\frac{1}{\sqrt{2}}\left[\left|p_{1}\right\rangle_{s}\left|p_{2}\right\rangle_{i}+\left|p_{2}\right\rangle_{s}\left|p_{1}\right\rangle_{i}\right]
$$

Time-energy Entanglement [Phys. Rev. Lett. 103, 253601 (2009)]

$$
|\psi\rangle=\frac{1}{\sqrt{2}}\left[\left|\omega_{1}\right\rangle_{s}\left|\omega_{2}\right\rangle_{i}+\left|\omega_{2}\right\rangle_{s}\left|\omega_{1}\right\rangle_{i}\right]
$$

Angular-position Orbital-angular-momentum Entanglement [Optics Express 17, 8287 (2009)]

$$
|\psi\rangle=\frac{1}{\sqrt{2}}\left[\left|l_{1}\right\rangle_{s}\left|l_{2}\right\rangle_{i}+\left|l_{2}\right\rangle_{s}\left|l_{1}\right\rangle_{i}\right]
$$

Quantum Cryptography (Quantum Key Distribution)

Older Method (scylate)

Modern Method

Message: OPTICS

Encrypt with Key: 010110

Encrypted message: OQTJDS

Encrypted message: OQTJDS
Decrypt with Key: 010110
Decrypted Message: OPTICS

Quantum Cryptography (Quantum Key Distribution)

Older Method (scylate)

Modern Method

Message: OPTICS

Encrypt with Key: 010110

Encrypted message: OQTJDS

Encrypted message: OQTJDS
Decrypt with Key: 010110
Decrypted Message: OPTICS

Main issue: Security
Future?
Quantum Key Distribution

Ekert91 Protocol: [Phys. Rev. Lett. 67, 661 (1991)]
SAlice sends a bit to Bob by measuring her bit; whatever bit
she measures becomes the incoming bit for Bob.

Alice's Bases	DA	HV	DA	HV	HV	HV	DA	DA	HV	HV	DA
Alice's random bits	1	0	0	1	0	1	1	0	0	1	0
Sifted bits		0			0		1			1	

Bob's Bases	HV	HV	HV	DA	HV	DA	DA	HV	DA	HV	HV
Bob's random bits	0	0	1	1	0	0	1	0	1	1	1
Sifted bits		0			0		1			1	

perfectly secure because of the laws of quantum mechanics

Quantum Superposition: Application (Quantum Cryptography)

What are those laws?

1. Measurement in an incompatible basis changes the quantum state
2. No Cloning Theorem: $\hat{U}|S\rangle|H\rangle \rightarrow|0\rangle|H H\rangle$

$$
\begin{aligned}
\hat{U}|S\rangle|V\rangle & \rightarrow|0\rangle|V V\rangle \\
\hat{U}|S\rangle(|H\rangle+|V\rangle) & \rightarrow|0\rangle(|H H\rangle+|V V\rangle) \\
& \neq|0\rangle|(H+V)(H+V)\rangle
\end{aligned}
$$

- C cannot clone an arbitrary quantum state sent out by A

Quantum Computation / Entanglement Quantification

Quantum Computation:

Shor's Factoring Algorithm [Proc. 35th Ann. Symp. Found. Comp. Sci. (IEEE Comp. Soc. Press, California, 1994) p. 124]

Grover's Search Algorithm Phys. Rev. Lett. 79, 325 (1997)

The basic building block for quantum computation:
two-qubit state, or more generally N -qudit state

Polarization Two-qubit state: $\quad|\psi\rangle=\left|H_{s}\right\rangle\left|H_{i}\right\rangle+\left|V_{s}\right\rangle\left|V_{i}\right\rangle$

OAM Two-qubit state:

$$
|\psi\rangle=\frac{1}{\sqrt{2}}\left[\left|l_{1}\right\rangle_{s}\left|l_{2}\right\rangle_{i}+\left|l_{2}\right\rangle_{s}\left|l_{1}\right\rangle_{i}\right]
$$

Entanglement Quantification

Most general Two-qubit state:

$$
\rho_{\text {qubit }}=\left(\begin{array}{cccc}
\rho 11 & \rho 12 & \rho 13 & \rho 14 \\
\rho 21 & \rho 22 & \rho 23 & \rho 24 \\
\rho 31 & \rho 32 & \rho 33 & \rho 34 \\
\rho 41 & \rho 42 & \rho 43 & \rho 44
\end{array}\right)
$$

What is the entanglement of such a two-qubit state:
The most widely accepted quantifier is Wootter's Concurrence, which ranges from 0 to 1 .

$$
\begin{aligned}
& \text { Concurrence } \\
& \zeta=\rho_{\text {qubit }}\left(\sigma_{y} \otimes \sigma_{y}\right) \rho_{\text {qubit }}^{*}\left(\sigma_{y} \otimes \sigma_{y}\right) \\
& C\left(\rho_{\text {qubit }}\right)=\max \left\{0, \sqrt{\lambda_{1}}-\sqrt{\lambda_{2}}-\sqrt{\lambda_{3}}-\sqrt{\lambda_{4}}\right\}
\end{aligned}
$$

Entanglement quantifier for a general \mathbf{N}-qudit state is yet to be found

Quantum Entanglement (Current Status of the Field)

Questions related to Foundations

- Non-locality and physical reality
- Physical origin of correlations between entangled particles
- Decay of correlation between entangled photons
- Quantification of entanglement in a quantum states

Applications

- Quantum Information, Quantum Cryptography, Quantum Teleportation
- Preparation of entangled states: Two-Qubit state, N-Qudit state
- Improved ways of making entangled quantum states
- Quantum Metrology, Quantum remote sensing

What is one-photon coherence?

What is two-photon coherence?

How is two-photon coherence connected to two-photon entanglement?

One-Photon Interference: "A photon interferes with itself " - Dirac

2
$D_{D_{A}}$

$$
\Delta l=l_{1}-l_{2}
$$

$$
I_{A} \propto\left\langle V_{A}^{*}(t) V_{A}(t)\right\rangle_{t}
$$

$$
I_{\mathrm{A}} \propto 1+\gamma(\Delta l) \cos \left(k_{0} \Delta l\right)
$$

Necessary condition for interference:

$$
\Delta l<l_{\mathrm{coh}}
$$

$$
\gamma(\Delta l)=\frac{\left\langle V_{1}^{*}(t) V_{2}(t-\Delta l / c)\right\rangle_{t}}{\sqrt{\left|V_{1}(t)\right|^{2}\left|V_{2}(t)\right|^{2}}}
$$

One-Photon Interference: "A photon interferes with itself " - Dirac

2

$D \sim_{D_{A}}$

$$
\Delta l=l_{1}-l_{2}
$$

$I_{\mathrm{A}} \propto 1+\gamma(\Delta l) \cos \left(k_{0} \Delta l\right)$

Necessary condition

for interference:

$$
\Delta l<l_{\mathrm{coh}}
$$

A photon interferes with itself: Spatial

$$
I_{A}(x)=k_{1}^{2} S\left(x_{1}, z\right)+k_{2}^{2} S\left(x_{2}, z\right)+2 k_{1} k 2 \sqrt{S\left(x_{1}, z\right) S\left(x_{2}, z\right)} \mu(\Delta x, z) \cos \left(k_{0} \Delta l\right)
$$

Necessary condition for interference:

$$
\left|\Delta \boldsymbol{\rho}_{p}\right|<\sigma_{\mu}(z)
$$

A photon interferes with itself: Angular

A photon interferes with itself: Angular

A photon interferes with itself: Angular

A photon interferes with itself: Angular

E. Yao et al., Opt. Express 14, 13089 (2006) A. K. Jha, et al., PRA 78, 043810 (2008)

A photon interferes with itself: Angular

OAM-mode distribution:

$$
I_{A}=C \frac{\alpha^{2}}{\pi} \operatorname{sinc}^{2}\left(\frac{l \alpha}{2}\right)[1+\cos (l \beta)]
$$

Two-photon interference (an example)

Hong-Ou-Mandel Effect C. K. Hong et al., PRL 59, 2044 (1987)

Two-photon interference (an example)

Hong-Ou-Mandel Effect C. K. Hong et al., PRL 59, 2044 (1987)

Two-photon interference (an example)

Hong-Ou-Mandel Effect C. K. Hong et al., PRL 59, 2044 (1987)

Here, a two-photon is interfering with itself

Two-photon interference (an example)

Hong-Ou-Mandel Effect C. K. Hong et al., PRL 59, 2044 (1987)

Applications in quantum metrology

Phys. Rev. Lett. 85, 2733 (2000).

Two-Photon Interference (Other examples)

- Hong-Ou-Mandel effect
C. K. Hong et al., PRL 59, 2044 (1987)

Quantum Optical Lithography
Phys. Rev. Lett. 85, 2733 (2000).

- Induced Coherence
X. Y. Zou et al., PRL 67, 318 (1991)

- Postponed Compensation Experiment
T. B. Pittman, PRL 77, 1917 (1996)

- Frustrated two-photon Creation T. J. Herzog et al., PRL 72, 629 (1994)

Two-Photon Interference: A two-photon interferes with itself

$$
\Delta L \equiv l_{1}-l_{2}
$$

two-photon path-length difference

$$
\Delta L^{\prime} \equiv l_{1}^{\prime}-l_{2}^{\prime}
$$

two-photon path-asymmetry length difference
$\Delta \phi \equiv\left(\phi_{s 1}+\phi_{i 1}+\phi_{p 1}\right)-\left(\phi_{s 2}+\phi_{i 2}+\phi_{p 2}\right)$

$$
R_{s i}=C\left[1+\gamma^{\prime}\left(\Delta L^{\prime}\right) \gamma(\Delta L) \cos \left(k_{0} \Delta L+\Delta \phi\right)\right]
$$

Necessary conditions for two-photon interference:

$$
\gamma(\Delta L)=\frac{\left.\left\langle v_{1}(t)\right)_{2}^{*}(t+\Delta L / c)\right\rangle_{t}}{\sqrt{\left|v_{1}\right|^{2}\left|v_{2}\right|^{2}}} \quad \gamma^{\prime}\left(\Delta L^{\prime}\right)=\frac{\left\langle g_{1}^{*}(\tau) g_{2}\left(\tau-\Delta L^{\prime} / c\right)\right\rangle_{\tau}}{\sqrt{\left|g_{1}\right|^{2}\left|g_{2}\right|^{2}}}
$$

$$
\begin{aligned}
& \Delta L<l_{\mathrm{coh}}^{p} \\
& \Delta L^{\prime}<l_{\mathrm{coh}}
\end{aligned}
$$

Jha, O’Sullivan, Chan, and Boyd et al., PRA 77, 021801(R) (2008)

Two-Photon Coherence and Entanglement

Coincidence Rate $R_{s i}\left(\boldsymbol{r}_{s}, \boldsymbol{r}_{i}\right)=k_{1}^{2} S^{(2)}\left(\boldsymbol{\rho}_{s 1}, \boldsymbol{\rho}_{i 1}, z\right)+k_{2}^{2} S^{(2)}\left(\boldsymbol{\rho}_{s 2}, \boldsymbol{\rho}_{i 2}, z\right)+k_{1} k_{2} W^{(2)}\left(\boldsymbol{\rho}_{s 1}, \boldsymbol{\rho}_{i 1}, \boldsymbol{\rho}_{s 2}, \boldsymbol{\rho}_{i 2}, z\right) e^{i\left[\omega_{s}\left(t_{s 1}-t_{s 2}\right)+\omega_{i}\left(t_{i 1}-t_{i 2}\right)\right]}+$ c.c.

A photon interferes with itself: Spatial

$$
I_{A}(x)=k_{1}^{2} S\left(x_{1}, z\right)+k_{2}^{2} S\left(x_{2}, z\right)+2 k_{1} k 2 \sqrt{S\left(x_{1}, z\right) S\left(x_{2}, z\right)} \mu(\Delta x, z) \cos \left(k_{0} \Delta l\right)
$$

Necessary condition for interference:

$$
\left|\Delta \boldsymbol{\rho}_{p}\right|<\sigma_{\mu}(z)
$$

Two-Photon Coherence and Entanglement

Coincidence Rate $R_{s i}\left(\boldsymbol{r}_{s}, \boldsymbol{r}_{i}\right)=k_{1}^{2} S^{(2)}\left(\boldsymbol{\rho}_{s 1}, \boldsymbol{\rho}_{i 1}, z\right)+k_{2}^{2} S^{(2)}\left(\boldsymbol{\rho}_{s 2}, \boldsymbol{\rho}_{i 2}, z\right)+k_{1} k_{2} W^{(2)}\left(\boldsymbol{\rho}_{s 1}, \boldsymbol{\rho}_{i 1}, \boldsymbol{\rho}_{s 2}, \boldsymbol{\rho}_{i 2}, z\right) e^{i\left[\omega_{s}\left(t_{s 1}-t_{s 2}\right)+\omega_{i}\left(t_{i 1}-t_{i 2}\right)\right]}+$ c.c.

$$
\begin{array}{rll}
\text { Entangled two-qubit state } & a=\eta S^{(2)}\left(\boldsymbol{\rho}_{1}, z\right) \\
\rho_{\text {qubit }}=\left(\begin{array}{llll}
a & 0 & 0 & c \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
d & 0 & 0 & b
\end{array}\right) & b=\eta S^{(2)}\left(\boldsymbol{\rho}_{2}, z\right) \\
& c=d^{*}=\eta W^{(2)}\left(\boldsymbol{\rho}_{1}, \boldsymbol{\rho}_{2}, z\right) \\
\eta=1 /\left[S^{(2)}\left(\boldsymbol{\rho}_{1}, z\right)+S^{(2)}\left(\boldsymbol{\rho}_{2}, z\right)\right]
\end{array}
$$

O’Sullivan et al., PRL 94, 220501 (2005)
Neves et al., PRA 76, 032314 (2007)
Walborn et al., PRA 76, 062305 (2007)
Taguchi et al., PRA 78, 012307 (2008)

Entanglement of the state (Concurrence) :

$$
\begin{aligned}
& C\left(\rho_{\text {qubit }}\right)=2|c|=2 \eta\left|W^{(2)}\left(\boldsymbol{\rho}_{1}, \boldsymbol{\rho}_{2}, z\right)\right| \\
& C\left(\rho_{\text {qubit }}\right)=\mu^{(2)}(\Delta \boldsymbol{\rho}, z) \quad(\text { with } a=b)
\end{aligned}
$$

Concurrence

W. K. Wootters, PRL 80, 2245 (1998)

$$
\begin{aligned}
& \zeta=\rho_{\text {qubit }}\left(\sigma_{y} \otimes \sigma_{y}\right) \rho_{\text {qubit }}^{*}\left(\sigma_{y} \otimes \sigma_{y}\right) \\
& C\left(\rho_{\text {qubit }}\right)=\max \left\{0, \sqrt{\lambda_{1}}-\sqrt{\lambda_{2}}-\sqrt{\lambda_{3}}-\sqrt{\lambda_{4}}\right\}
\end{aligned}
$$

Angular Two-Photon Interference

OAM-mode
detector

OAM-mode detector

State of the two photons produced by PDC:

$$
\left|\psi_{\mathrm{tp}}\right\rangle=\sum_{l=-\infty}^{\infty} c_{l}|l\rangle_{s}|-l\rangle_{i}
$$

State of the two photons after the aperture:

$$
\rho_{\text {qubit }}=\left(\begin{array}{cccc}
\rho_{11} & 0 & 0 & \rho_{14} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\rho_{14} & 0 & 0 & \rho_{44}
\end{array}\right) \quad \begin{array}{r}
\rho_{14}=\rho_{41}^{*} \\
=\sqrt{\rho_{11} \rho_{44}} \mu e^{i \theta} \\
\rho_{11}+\rho_{44}=1
\end{array}
$$

Coincidence count rate:

$$
\begin{aligned}
\left.R_{s i}=\frac{A^{2} \alpha^{4}}{4 \pi^{2}} \right\rvert\, & \left.\sum_{l} c_{l} \operatorname{sinc}\left[\left(l_{s}-l\right) \frac{\alpha}{2}\right] \operatorname{sinc}\left[\left(l_{i}+l\right) \frac{\alpha}{2}\right]\right|^{2} \\
& \times\left\{\rho_{11}+\rho_{44}+2 \sqrt{\rho_{11} \rho_{44}} \mu \cos \left[\left(l_{s}+l_{i}\right) \beta+\theta\right]\right\}
\end{aligned}
$$

Visibility: $\quad V=2 \sqrt{\rho_{11} \rho_{44}} \mu$

Concurrence of the two-qubit state:

$$
C\left(\rho_{\text {qubit }}\right)=2\left|\rho_{14}\right|=2 \sqrt{\rho_{11} \rho_{44}} \mu=V
$$

Angular Two-Photon Interference

State of the two photons produced by PDC:

$$
\left|\psi_{\mathrm{tp}}\right\rangle=\sum_{l=-\infty}^{\infty} c_{l}|l\rangle_{s}|-l\rangle_{i}
$$

State of the two photons after the aperture:

$$
\rho_{\text {qubit }}=\left(\begin{array}{cccc}
\rho_{11} & 0 & 0 & \rho_{14} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\rho_{14} & 0 & 0 & \rho_{44}
\end{array}\right) \quad \begin{array}{r}
\rho_{14}=\rho_{41}^{*} \\
=\sqrt{\rho_{11} \rho_{44}} \mu e^{i \theta} \\
\rho_{11}+\rho_{44}=1
\end{array}
$$

Coincidence count rate:

$$
\begin{aligned}
\left.R_{s i}=\frac{A^{2} \alpha^{4}}{4 \pi^{2}} \right\rvert\, & \left.\sum_{l} c_{l} \operatorname{sinc}\left[\left(l_{s}-l\right) \frac{\alpha}{2}\right] \operatorname{sinc}\left[\left(l_{i}+l\right) \frac{\alpha}{2}\right]\right|^{2} \\
& \times\left\{\rho_{11}+\rho_{44}+2 \sqrt{\rho_{11} \rho_{44}} \mu \cos \left[\left(l_{s}+l_{i}\right) \beta+\theta\right]\right\}
\end{aligned}
$$

Visibility: $\quad V=2 \sqrt{\rho_{11} \rho_{44}} \mu$
Concurrence of the two-qubit state:

$$
C\left(\rho_{\text {qubit }}\right)=2\left|\rho_{14}\right|=2 \sqrt{\rho_{11} \rho_{44}} \mu=V
$$

Angular Two-Photon Interference

OAM-mode

Coincidence count rate:

$$
\begin{aligned}
\left.R_{s i}=\frac{A^{2} \alpha^{4}}{4 \pi^{2}} \right\rvert\, & \left.\sum_{l} c_{l} \operatorname{sinc}\left[\left(l_{s}-l\right) \frac{\alpha}{2}\right] \operatorname{sinc}\left[\left(l_{i}+l\right) \frac{\alpha}{2}\right]\right|^{2} \\
& \times\left\{\rho_{11}+\rho_{44}+2 \sqrt{\rho_{11} \rho_{44}} \mu \cos \left[\left(l_{s}+l_{i}\right) \beta+\theta\right]\right\}
\end{aligned}
$$

Visibility: $\quad V=2 \sqrt{\rho_{11} \rho_{44}} \mu$

Concurrence of the two-qubit state:

$$
C\left(\rho_{\text {qubit }}\right)=2\left|\rho_{14}\right|=2 \sqrt{\rho_{11} \rho_{44}} \mu=V
$$

Angular Two-Photon Interference

$$
\begin{aligned}
\alpha & =\pi / 10 \\
\beta & =\pi / 4
\end{aligned}
$$

OAM-mode order of signal and idler photons $(l,-l)$

OAM-mode detector

$$
\begin{aligned}
\left.R_{s i}=\frac{A^{2} \alpha^{4}}{4 \pi^{2}} \right\rvert\, & \left.\sum_{l} c_{l} \operatorname{sinc}\left[\left(l_{s}-l\right) \frac{\alpha}{2}\right] \operatorname{sinc}\left[\left(l_{i}+l\right) \frac{\alpha}{2}\right]\right|^{2} \\
& \times\left\{\rho_{11}+\rho_{44}+2 \sqrt{\rho_{11} \rho_{44}} \mu \cos \left[\left(l_{s}+l_{i}\right) \beta+\theta\right]\right\}
\end{aligned}
$$

Visibility: $\quad V=2 \sqrt{\rho_{11} \rho_{44}} \mu$

Concurrence of the two-qubit state:

$$
C\left(\rho_{\text {qubit }}\right)=2\left|\rho_{14}\right|=2 \sqrt{\rho_{11} \rho_{44}} \mu=V
$$

A. K. Jha et al., PRL 104, 010501 (2010)

Summary

Parametric down-conversion (PDC)

Bunrham and Weinberg, Phys. Rev. Lett. 25, 85 (1970)

Robert W. Boyd,

Nonlinear Optics, $2^{\text {nd }}$ ed.

variable	Conservation law	Entanglement	EPR Paradox	Two-photon coherence
Energy	$\omega_{p}=\omega_{s}+\omega_{i}$	Time and energy	$\Delta t_{\text {cond }}^{(1)} \Delta E_{\text {cond }}^{(1)}<\frac{\hbar}{2}$	Temporal
Transverse Momentum	$\boldsymbol{q}_{p}=\boldsymbol{q}_{s}+\boldsymbol{q}_{i}$	Position and momentum	$\Delta x_{\text {cond }}^{(1)} \Delta p_{\text {cond }}^{(1)}<\frac{\hbar}{2}$	Spatial
Orbital angular momentum	$l_{p}=l_{s}+l_{i}$	Angular position and orbital angular momentum	$\Delta \phi_{\text {cond }}^{(1)} \Delta L_{\text {cond }}^{(1)}<\frac{\hbar}{2}$	Angular

Entangled Photons: Future directions

1. Foundations of Quantum Mechanics. (Theory + Experiment)

- Questions related to non-locality and physical reality.
- Complete description of two-photon entanglement in terms of coherence measures
- Extension of coherence-based measure for quantifying high-dimensional entanglement.
- Photon-statistics of entangled photons.
- Correlated-noise measurements of entangled photons

2. Applications of Quantum Entanglement. (Theory + Experiment)

- Developing sources of entangled photon based on parametric down-conversion
- Use of OAM-entangled photons for high-dimensional Quantum information processing.
- Use of entangled photons for high-resolution imaging, remote sensing and communication through turbulent atmosphere.

Entangled Photons: Open Problems!

1. Foundations of Quantum Mechanics. (Theory + Experiment)

- Questions related to non-locality and physical reality.
- Complete description of two-photon entanglement in terms of coherence measures
- Extension of coherence-based measure for quantifying high-dimensional entanglement.
- Photon-statistics of entangled photons.
- Correlated-noise measurements of entangled photons

2. Applications of Quantum Entanglement. (Theory + Experiment)

- Setup a source of entangled photon based on parametric down-conversion
- Use of OAM-entangled photons for high-dimensional Quantum information processing.
- Use of entangled photons for high-resolution imaging, remote sensing and communication through turbulent atmosphere.

PhD and Post-Doc positions available within the group

Thank you for your attention

